Posts Tagged ‘intel nehalem’

h1

AMD Istanbul and Intel Nehalem-EP: Street Prices

June 22, 2009

It’s been three weeks after the official launch of AMD’s 6-core Istanbul processor and we wanted to take a look at prevailing street prices for the DIY upgrade option.

Istanbul Pricing (Street)

AMD “Istanbul” Opteron™ Processor Family
2400 Series Price 8400 Series Price
2.6GHz Six-Core, 6-Thread
AMD Opteron 2435 (75W ACP)
$1060.77 2.6GHz Six-Core, 6-Thread
AMD Opteron 8435 (75W ACP)
$2,842.14
2.4GHz Six-Core, 6-Thread
AMD Opteron 2431 (75W ACP)
$743.74
$699.00
2.4GHz Six-Core, 6-Thread
AMD Opteron 8431 (75W ACP)
$2,305.70
2.2GHx Six-Core, 6-Thread
AMD Opteron 2427 (75W ACP)
$483.82
$499.99

Nehalem-EP/EX Pricing (Street)

After almost two months on the market, the Nehalem has been on the street long enough to see a 1-3% drop in prices. How does Istanbul stack-up against the Nehalem-EP/Xeon pricing?

Intel “Nehalem” Xeon Processor Family
EP Series Price EX Series Price
2.66GHz Quad-Core, 8-Thread Intel Xeon EP X5550 (95W TDP) $999.95
$999.99
Quad-Core, 8-Thread Intel Xeon EX TDB
2.4GHz Quad-Core, 8-Thread Intel Xeon EP E5530 (80W TDP) $548.66
$549.99
Quad-Core, 8-Thread Intel Xeon EX TBD
2.26GHz Quad-Core, 8-Thread Intel Xeon EP E5520 (80W TDP) $400.15
$379.99
2.26GHz Quad-Core, 8-Thread Intel Xeon EP L5520 (60W TDP) $558.77
$559.99

Compared to the competing Nehalem SKU’s, the Istanbul is fetching a premium price. This is likely due to the what AMD perceives to be the broader market that Istanbul is capable of serving (and its relative newness relative to demand, et al). Of course, there are no Xeon Nehalem-EX SKU’s in supply to compare against Istanbul in the 4P and 8P segments, but in 2P, it appears Istanbul is running 6% higher at the top bin SKU and 27% higher at the lower bin SKU – with the exception of the 60W TDP part, upon which Intel demands a 13% premium over the 2.2GHz Istanbul part.

This last SKU is the “green datacenter” battleground part. Since the higher priced 2.6GHz Istanbul rates a 15W (ACP) premium over the L5520, it will be interesting to see if system integrators will compare it to the low-power Xeon in power-performance implementations. Comparing SPECpower_ssj2008 between similarly configured Xeon L5520 and X5570, the performance-per-watt is within 2% for relatively anemic, dual-channel 8GB memory configurations.

In a virtualization system, this memory configuration would jump from an unusable 8GB to at least 48GB, increasing average power consumption by another 45-55W and dropping the performance-per-watt ratio by about 25%. Looking at the relative performance-per-watt of the Nehalem-EP as compared to the Istanbul in TechReport’s findings earlier this month, one could extrapolate that the virtualization performance-per-watt for Istanbul is very competitive – even with the lower-power Xeon – in large memory configurations. We’ll have to wait for similar SPECpower_ssj2008 in 4P configurations to know for sure.

System Memory Pricing (Street)

System memory represents 15-20% of system pricing – more in very large memory foot prints. We’ve indicated that Istanbul’s time-to-market strategy shows a clear advantage (CAPEX) in memory pricing alone – more than compensating for the slight premium in CPU pricing.

System Memory Pricing
DDR2 Series (1.8V) Price DDR3 Series (1.5V) Price

4GB 800MHz DDR2 ECC Reg with Parity CL6 DIMM Dual Rank, x4 (5.4W)
$100.00

4GB 1333MHz DDR3 ECC Reg w/Parity CL9 DIMM Dual Rank, x4 w/Therm Sen (3.96W)

$138.00

4GB 667MHz DDR2 ECC Reg with Parity CL5 DIMM Dual Rank, x4 (5.94W)
$80.00

4GB 1066MHz DDR3 ECC Reg w/Parity CL7 DIMM Dual Rank, x4 w/Therm Sen (5.09W)
$132.00

8GB 667MHz DDR2 ECC Reg with Parity CL5 DIMM Dual Rank, x4 (7.236W)
$396.00

8GB 1066MHz DDR3 ECC Reg w/Parity CL7 DIMM Dual Rank, x4 w/Therm Sen (6.36W)
$1035.00

These parts show a 28%, 40% and 62% premium price for DDR3 components versus DDR2 which indicates Istanbul’s savings window is still wide-open. Since DDR3 prices are not expected to fall until Q3 at the earliest, this cost differential is expected to influence “private cloud” virtualization systems more strongly. However, with the 0.3V lower voltage requirement on the DDR3 modules, Nehalem-EP actually has a slight adavantage from a operational power perspective in dual-channel configurations. When using tripple-channel for the same memory footprint, Nehalem-EP’s memory consumes about 58% more power (4x8GB vs. 9x4GB).

h1

Quick Take: Cisco Enters the Blade Market

March 20, 2009

NetworkWorld has a decent article on Cisco’s entry into the blade computing market with a virtualization-focused product Cisco calls the “Unified Computing System.” It’s not commodity stuff, building on “soon to be released” Nehalem processors, 10Gb interfaces and FCoE capability in a supposedly made-for-VMware design.

The response from the Dell VP made me reach for a handkerchief (somebody get him a crying towel!) Of course the Cisco solution is “very niche-focused” but it is also very forward thinking. However, with Cisco’s record on computing hardware in their embedded products, it’s hard to have a lot of confidence in their “first wave” of blades. Likewise, their QC on software needs to be “in the zone” if they are going to be successful in the “densely virtualized” market as this box would imply.

SOLORI’s take: Feature-for-feature, Cisco will be alone for a few months as others play catch-up, but catch-up to what market? Are there really lots of enterprise customers out there begging for 10Gb/FCoE-connected blade servers at price-be-damned rates? This approach is moving AWAY from commodity computing and, hence, is a “loser” based on the SOLORI enterprise model.

SOLORI’s 2nd take: This could become a juggernaut in the HPC setting with “price-be-damned” and “budgets” come from institutions and governments. It looks as if Cisco’s finally found a way to move its pricy 10G products into that space.

Read the entire article at NetworkWorld.com… Read the rest of this entry ?