Posts Tagged ‘12-core’

h1

Quick-Take: AMD Dodeca-core Opteron, Real Soon Now

March 3, 2010

In a recent blog, John Fruehe recounted a few highlights from the recent server analyst event at AMD/Austin concerning the upcoming release of AMD’s new 12-core (dodeca) Opteron 6100 series processor – previously knows as Magny-Cours. While not much “new” was officially said outside of NDA privilege, here’s what we’re reading from his post:

1. Unlike previous launches, AMD is planning to have “boots on the ground” this time with vendors and supply alignments in place to be able to ship product against anticipated demand. While it is now well known that Magny-Cours has been shipping to certain OEM and institutional customers for some time, our guess is that 2000/8000 series 6-core HE series have been hard to come by for a reason – and that reason has 12-cores not 6;

Obviously the big topic was the new AMD Opteron™ 6000 Series platforms that will be launching very soon.  We had plenty of party favors – everyone walked home with a new 12-core AMD Opteron 6100 Series processor, code name “Magny-Cours”.

– Fruehe on AMD’s pending launch

2. Timing is right! With Intel’s Nehalem-EX 8-core and Core i7/Nehalem-EP 6-core being demoed about, there is more pressure than ever for AMD to step-up with a competitive player. Likewise, DDR3 is neck-and-neck with DDR2 in affordability and way ahead with low-power variants that more than compensate for power-hungry CPU profiles. AMD needs to deliver mainstream performance in 24-cores and 96GB DRAM within the power envelope of 12-cores and 64GB to be a player. With 1.35V DDR3 parts paired to better power efficiency in the 6100, this could be a possibility;

We demonstrated a benchmark running on two servers, one based on the Six-Core AMD Opteron processor codenamed “Istanbul,” and one 12-core “Magny-Cours”-based platform.  You would have seen that the power consumption for the two is about the same at each utilization level.  However, there is one area where there was a big difference – at idle.  The “Magny-Cours”-based platform was actually lower!

– AMD’s Fruehe on Opteron 6100’s power consumption

3. Performance in scaled virtualization matters – raw single-threaded performance is secondary. In virtual architectures, clusters of systems must perform as one in an orchestrated ballet of performance and efficiency seeking. For some clusters, dynamic load migration to favour power consumption is a priority – relying on solid power efficiency under high load conditions. For other clusters, workload is spread to maximize performance available to key workloads – relying on solid power efficiency under generally light loads. For many environments, multi-generational hardware will be commonplace and AMD is counting on its wider range of migration compatibility to hold-on to customers that have not yet jumped ship for Intel’s Nehalem-EP/EX.

“We demonstrated Microsoft Hyper-V running on two different servers, one based on a Quad-Core AMD Opteron processor codenamed “Barcelona” (circa 2007) and a brand new “Magny-Cours”-based system. …companies might have problems moving a 2010 VM to a 2007 server without limiting the VM features. (For example, in order to move a virtual machine from an Intel  “Nehalem”-based system to a “Harpertown” [or earlier] platform, the customer must not enable nested paging in the “Nehalem” virtual machine, which can reduce the overall performance of the VM.)”

– AMD’s Fruehe, extolling the virtues of Opteron generational compatibility

SOLORI’s Take: It would appear that Magny-Cours has more under the MCM hood than a pair of Istanbul processors (as previously charged.) To manage better idle performance and constant power performance in spite of a two-to-one core ratio and similar 45nm process, AMD’s process and feature set must include much better power management as well, however, core speed is not one of them. With the standard “Maranello” 6100 series coming in at 1.9, 2.1 and 2.2 GHz with an HE variant at 1.7GHz and SE version running at 2.3GHz, finding parity in an existing cluster of 2.4, 2.6 and 2.8 GHz six-core servers may be difficult. Still, Maranello/G34 CPUs will be at 85, 115 and 140W TDP.

That said, Fruehe has a point on virtualization platform deployment and processor speed: it is not necessary to trim-out an entire farm with top-bin parts – only a small portion of the cluster needs to operate with top-band performance marks. The rest of the market is looking for predictable performance, scalability and power efficiency per thread. While SMT makes a good run at efficiency per thread, it does so at the expense of predictable performance. Here’s hoping that AMD’s C1E (or whatever their power-sipping special sauce will be called) does nothing to interfere with predictable performance…

As we’ve said before, memory capacity and bandwidth (as a function of system power and core/thread capacity) are key factors in a CPU’s viability in a virtualization stack. With 12 DIMM slots per CPU (3-DPC, 4-channel), AMD inherits an enviable position over Intel’s current line-up of 2P solutions by being able to offer 50% more memory per cluster node without resorting to 8GB DIMMs. That said, it’s up to OEM’s to deliver rack server designs that feature 12 DIMM per CPU and not hold-back with only 8 DIMM variants. In the blade and 1/2-size market, cramming 8 DIMM per board (effectively 1-DPC for 2P Magny-Cours) can be a challenge let alone 24 DIMMs! Perhaps we’ll see single-socket blades with 12 DIMMs (12-cores, 48/96GB DDR3) or 2P blades with only one 12 DIMM memory bank (one-hop, NUMA) in the short term.

SOLORI’s 2nd Take: It makes sense that AMD would showcase their leading OEM partners because their success will be determined on what those OEM’s bring to market. With VDI finally poised to make a big market impact, we’d expect to see the first systems delivered with 2-DPC configurations (8 DIMM per CPU, economically 2.5GB/core) which could meet both VDI and HPC segments equally. However, with Window7 gaining momentum, what’s good for HPC might not cut it for long in the VDI segment where expectations of 4-6 VM’s per core at 1-2GB/VM are mounting.

Besides the launch date, what wasn’t said was who these OEM’s are and how many systems they’ll be delivering at launch. Whoever they are, they need to be (1) financially stronger than AMD, (2) in an aggressive marketing position with respect to today’s key growth market (server and desktop virtualization), and (3) willing to put AMD-based products “above the fold” on their marketing and e-commerce initiatives. AMD needs to “represent” in a big way before a tide of new technologies makes them yesterday’s news. We have high hopes that AMD’s recent “perfect” execution streak will continue.

h1

Quick Take: Year-end DRAM Price Follow-up, Thoughts on 2010

December 30, 2009

Looking at memory prices one last time before the year is out and prices of our “benchmark” Kingston DDR3 server DIMMs are on the decline. While the quad rank 8G DDR3/1066 DIMMs are below the $565 target price (at $514) we predicted back in August, the dual rank equivalent (on our benchmark list) are still hovering around $670 each. Likewise, while retail price on the 8G DDR2/667 parts continue to rise, inventory and promotional pricing has managed to keep them flat at $433 each, giving large foot print DDR2 systems a $2,000 price advantage (based on 64GB systems).

Benchmark Server (Spot) Memory Pricing – Dual Rank DDR2 Only
DDR2 Reg. ECC Series (1.8V) Price Jun ’09 Price Sep ’09 Price
Dec ’09

KVR800D2D4P6/4G
4GB 800MHz DDR2 ECC Reg with Parity CL6 DIMM Dual Rank, x4
(5.400W operating)
$100.00 $117.00
up 17%
$140.70
up 23%

(Promo price, retail $162)

KVR667D2D4P5/4G
4GB 667MHz DDR2 ECC Reg with Parity CL5 DIMM Dual Rank, x4 (5.940W operating)
$80.00 $103.00
up 29%
$97.99
down 5%

(retail $160)

KVR667D2D4P5/8G
8GB 667MHz DDR2 ECC Reg with Parity CL5 DIMM Dual Rank, x4 (7.236W operating)
$396.00 $433.00 $433.00

(Promo price, retail $515)
Benchmark Server (Spot) Memory Pricing – Dual Rank DDR3 Only
DDR3 Reg. ECC Series (1.5V) Price Jun ’09 Price Sep ’09 Price
Dec ’09

KVR1333D3D4R9S/4G
4GB 1333MHz DDR3 ECC Reg w/Parity CL9 DIMM Dual Rank, x4 w/Therm Sen (3.960W operating)
$138.00 $151.00
up 10%

$135.99

down 10%

KVR1066D3D4R7S/4G
4GB 1066MHz DDR3 ECC Reg w/Parity CL7 DIMM Dual Rank, x4 w/Therm Sen (5.09W 5.085W operating)
$132.00 $151.00
up 15%
$137.59
down 9%(retail $162)

KVR1066D3D4R7S/8G
8GB 1066MHz DDR3 ECC Reg w/Parity CL7 DIMM Dual Rank, x4 w/Therm Sen (6.36W 4.110W operating)
$1035.00 $917.00
down 11.5%
$667.00
down 28%

(avail. 1/10)

As the year ends, OEMs are expected to “pull up inventory,” according to DRAMeXchange, in advance of a predicted market short fall somewhere in Q2/2010. Demand for greater memory capacities are being driven by Windows 7 and 64-bit processors with 4GB as the well established minimum system foot print ending 2009. With Server 2008 systems demanding 6GB+ and increased shift towards large memory foot print virtualization servers and blades, the market price for DDR3 – just turning the corner in Q1/2010 versus DDR2 – will likely flatten based on growing demand.

SOLORI’s Take: With Samsung and Hynix doubling CAPEX spending in 2010, we’d be surprised to see anything more than a 30% drop in retail 4GB and 8GB server memory by Q3/2010 given the anticipated demand. That puts 8G DDR3/10666 at $470/stick versus $330 for 2x 4GB and on track with August 2009 estimates. The increase in compute, I/O and memory densities in 2010 will be market changing and memory demand will play a small (but significant) role in that development.

In the battle to “feed” the virtualization servers of 2H/2010, the 4-channel “behemoth” Magny-Cours system could have a serious memory/price advantage with 8 (2-DPC) or 12 (3-DPC) configurations of 64GB (2.6GB/thread) and 96GB (3.9GB/thread) DDR3/1066 using only 4GB sticks (assumes 2P configuration). Similar GB/thread loads on Nehalem-EP6 “Gulftown” (6-core/12-thread) could be had with 72GB DDR3/800 (18x 4GB, 3-DPC) or 96GB DDR3/1066 (12x 8GB, 2-DPC), providing the solution architect with a choice between either a performance (memory bandwidth) or price (about $2,900 more) crunch. This means Magny-Cours could show a $2-3K price advantage (per system) versus Nehalem-EP6 in $/VM optimized VDI implementations.

Where the rubber starts to meet the road, from a virtualization context, is with (unannounced) Nehalem-EP8 (8-core/16-thread) which would need 96GB (12x 8GB, 2-DPC) to maintain 2.6GB/thread capacity with Magny-Cours. This creates a memory-based price differential – in Magny-Cours’ favor – of about $3K per system/blade in the 2P space. At the high-end (3.9GB/thread), the EP8 system would need a full 144GB (running DDR3/800 timing) to maintain GB/thread parity with 2P Magny-Cours – this creates a $5,700 system price differential and possibly a good reason why we’ll not actually see an 8-core/16-thread variant of Nehalem-EP in 2010.

Assuming that EP8 has 30% greater thread capacity than Magny-Cours (32-threads versus 24-threads, 2P system), a $5,700 difference in system price would require a 2P Magny-Cours system to cost about $19,000 just to make it an even value proposition. We’d be shocked to see a MC processor priced above $2,600/socket, making the target system price in the $8-9K range (24-core, 2P, 96GB DDR3/1066). That said, with VDI growth on the move, a 4GB/thread baseline is not unrealistic (4 VM/thread, 1GB per virtual desktop) given current best practices. If our numbers are conservative, that’s a $100 equipment cost per virtual desktop – about 20% less than today’s 2P equivalents in the VDI space. In retrospect, this realization makes VMware’s decision to license VDI per-concurrent-user and NOT per socket a very forward-thinking one!

Of course, we’re talking about rack servers and double-size and non-standard blades here: after all, where can we put 24 DIMM slots (2P, 3-DPC, 4-channel memory) on a SFF blade? Vendors will have a hard enough time with 8-DIMM per processor (2P, 2-DPC, 4-channel memory) configurations today. Plus, all that dense compute and I/O will need to get out of the box somehow (10GE, IB, etc.) It’s easy to see that HPC and virtualization platforms demands are converging, and we think that’s good for both markets.

SOLORI’s 2nd Take: Why does 8GB of DRAM require less than 4GB at the same speed and voltage??? The 4GB stick is based on 36x 256M x 4-bit DDR3-1066 FBGA’s (60nm) and the 8GB stick is based on 36x 512M x 4-bit DDR3-1066 FBGA’s (likely 50nm). According to SAMSUNG, the smaller feature size offers nearly 40% improvement in power consumption (per FBGA). Since the sticks use the same number of FBGA components (1Gb vs 2Gb), the 20% power savings seems reasonable.

The prospect of lower power at higher memory densities will drive additional market share to modules based on 2Gb DRAM modules. The gulf between DDR2 will continue to expand as tooling shifts to majority-DDR3 production and the technology. While minority leader Hynix announced a 50nm 2Gb DDR2 part earlier this year (2009), the chip giant Samsung continues to use 60-nm for its 2Gb DDR2. Recently, Hynix announced a successful validation of its 40-nm class 2Gb DDR3 module operating at 1333MHz and saving up to 40% power from the 50nm design. Similarly, Samsung’s leading the DRAM arms race with 30nm, 4Gb DDR3 production which will show-up in 1.35V, 16GB UDIMM and RDIMM in 2010 offering additional power saving benefits over 40-50nm designs. Meanwhile, Samsung has all but abandoned advances on DDR2 feature sizes.

The writing is on the wall for DDR2 systems: unit costs are rising, demand is shrinking, research is stagnant and a new wave of DDR3-based hardware is just over the horizon (1H/2010). While these things will show the door to DDR2-based systems (which enjoyed a brief resurgence in 2009 due to DDR3 supply problems and marginal power differences) as demand and DDR3 advantages heat-up in later 2010, it’s kudos to AMD for calling the adoption curve, spot on!

h1

Opteron Turns 6: Plus Istanbul and a New Road-map

April 22, 2009

AMD released an updated technology road-map for it’s Opteron processor family, beginning with the early availability of Istanbul – its Socket-F compatible 6-core processor – shipping for revenue in May and available from OEM’s in June. This information was delivered in a webcast today.

AMD Istanbul 6-core Processor

AMD Istanbul 6-core Processor

“…up to 30 percent more performance within the same power envelope and on the same platform as current Quad-Core AMD Opteron…”

Additionally, AMD updated the availability of its Direct Connect Architecture 2.0 to be available only in the Opteron 4000 and 6000 series (socket C32 and G34, respectively). Companies waiting for the 12-core “Magny-Cours” processor will have to switch to the G34 platform in 2010. AMD announced that it is already shipping this 45nm part to sampling partners, and some customers will receive parts in 2H/2009. Magny-Cours is expected to be available from OEM’s and system vendors in 1H/2010.

Opteron 4000 series is also planned for introduction in 2010 for 1P and 2P servers and designed to address virtualized Web and cloud computing environments. The 4000 series will launch with 4- and 6-core processors…”

AMD believes, with core counts on the rise, dense computing (HPC and data center virtualization or cloud) will rely on the 4000 series and its more “green friendly” low power parts called “EE” offering comparable performance at 40W average power. This will create a differential in the server space between 4000 and 6000 (much like 2000 and 8000 today) but with overlap in the 2P market (unlike 2000/8000). The 6000 series is envisioned as a “high performance computing” part where power sensitivity is not the major concern. Read the rest of this entry ?